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ABSTRACT: 
 
Earth science research and application requirements for multispectral data have often been driven by currently available remote 
sensing technology.  Few parametric studies exist that specify data required for certain applications. Consequently, data requirements 
are often defined based on the best data available or on what has worked successfully in the past.  Since properties such as spatial 
resolution, swath width, spectral bands, signal-to-noise ratio (SNR), data quantization and band-to-band registration drive sensor 
platform and spacecraft system architecture and cost, analysis of these criteria is important to optimize system design objectively.  
Remote sensing data requirements are also linked to calibration and characterization methods.  Parameters such as spatial resolution, 
radiometric accuracy and geopositional accuracy affect the complexity and cost of calibration methods.  However, few studies have 
quantified the true accuracies required for specific problems.  As calibration methods and standards are proposed, it is important that 
they be tied to well-known data requirements.  The Application Research Toolbox (ART) developed at the John C. Stennis Space 
Center provides a simulation-based method for multispectral data requirements development.  The ART produces simulated datasets 
from hyperspectral data through band synthesis.  Parameters such as spectral band shape and width, SNR, data quantization, spatial 
resolution and band-to-band registration can be varied to create many different simulated data products.  Simulated data utility can 
then be assessed for different applications so that requirements can be better understood. 
 
 

1. INTRODUCTION 

The accuracies and specifications of remote sensing data will 
determine the design and cost of a remote sensing system.  
Parameters such as signal-to-noise ratio (SNR), ground sample 
distance (GSD) and data quantization will impact sensor 
design, data storage, communications, and processing 
architectures and costs.  Remote sensing calibration and 
characterization methods and instruments are also driven by the 
accuracy of the data being studied.  For example, an absolute 
radiometric accuracy requirement of 3 percent in an image 
dataset will drive the need for the same level of calibration 
accuracy for both laboratory and vicarious calibrations.  This 
will in turn affect the cost and complexity of calibration and 
characterization approaches and procedures.  A thorough 
understanding of required calibration accuracies is therefore 
required before developing and performing calibration 
procedures.  Parametric studies through data simulation can 
help to optimize data requirements prior to instrument design or 
data acquisition. In addition, physics-based simulation can offer 
an additional role in the cross-comparison verification and 
validation of remote sensing systems. 
 
The NASA Stennis Space Center (SSC) in Mississippi has 
developed the Applications Research Toolbox (ART), a group 
of data simulation algorithms designed to support systematic 
studies of remote sensing data requirements.  The ART 
software provides the capability to generate simulated 
multispectral images with predefined properties from existing 
data with higher spatial and spectral resolution. Multiple 

datasets simulated with key data characteristics varied 
parametrically can be then evaluated by potential end-users for 
utility in real-world applications. 
 
 

2. FUNCTIONAL OVERVIEW 

The ART data simulation process begins by identifying an 
input dataset.  Typically, the input data is very high spatial 
resolution hyperspectral or multispectral imagery.  The first 
step in the data simulation process is spectral band synthesis, 
which is the process of combining several hyperspectral bands 
to create one multispectral band.  In the next step, band-to-band 
misregistration artifacts may be added to simulate sensor 
artifacts introduced during data acquisition. Next, the spatial 
degradation or spatial synthesis algorithm is applied to convert 
the input image GSD and/or point spread function (PSF) to the 
GSD and PSF of the targeted sensor. Noise may then be added 
to the simulated image by applying a two-point noise 
equivalent radiance random noise algorithm. Because of the 
heavy numerical processing, the data precision of the resultant 
image is usually not at the simulated sensor’s desired level. 
Therefore, an algorithm is applied to convert the quantization of 
the processed image (normally 32-bit floating point) to the 
target sensor’s quantization level.  Depending on the intent of 
the simulation study and on the type of input data, some or all 
of these steps may be performed.  The next section describes 
each step in detail (Gasser, 2001). 
 



 

3. ALGORITHMS 
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3.1 Spectral Band Synthesis 

The simulation of a wide-band multispectral sensor using a 
narrow-band hyperspectral sensor is achieved by using a linear 
combination of the hyperspectral sensor responses, normally 
Gaussian in nature, to create a wide-band spectral response 
(represented by a spectral response curve).  In this process, each 
band of a multispectral image is simulated by a weighted sum 
of the hyperspectral image bands. Differences between the 
ART spectral synthesis algorithm and other methods are in the 
ways the weights are determined (Blonski et al., 2002). In the 
ART approach, calculation of the weights is based on finding 
the best approximation of a multispectral response by a linear 
combination of the hyperspectral responses. This method is 
consistent with the goal of accurately modeling a sensor with a 
predefined spectral response.  
 Figure 1. Comparison of actual (dashed) and simulated 

(dotted) spectral response of Landsat 7 ETM+ 
band 1; hyperspectral AVIRIS components used in 
the band synthesis are shown as solid lines. 

To illustrate, consider a multispectral instrument (MSI) with 
NMSI bands and a hyperspectral instrument (HSI) with NHSI 
bands. The spectral response of the ith MSI band Ri

MSI is defined 
at n wavelengths λk. Spectral response of the jth HSI band Rj

HSI 
is also known for these wavelengths. The linear combination 
coefficients cij are derived by solving the following set of band-
synthesis equations in the least-squares sense: 

 
3.2 Band-to-Band Misregistration 

The ART provides a mechanism for introducing the effects of 
band-to-band misregistration into simulated image products. 
The misregistration method allows users to shift pixels of the 
band of interest in the column (left/right) and/or row (up/down) 
directions. A new image is created that is clipped by the 
number of rows and/or columns shifted. For the band of 
interest, clipping takes place on the image edges in the direction 
of shift, and all other bands are clipped on the edges opposite to 
the direction of shift. When more than one band is shifted, the 
output image is the union of all clipped bands. It is 
recommended that spatial synthesis/degradation (described in 
the following section) be performed after the band-to-band 
misregistration procedure.  Figure 2 illustrates a simple 
example where only one band is shifted. The resultant image 
will always be smaller than the original image. This fact must 
be taken into account when comparing the misregistered image 
to the original image (Gasser, 2001). 
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Spectral responses of existing hyperspectral instruments, such 
as the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS) and Hyperion, are accurately approximated with 
Gaussian functions. For the HSI bands with the Gaussian shape 
and full width at half-maximum ∆j, the coefficients cij are used 
in the following weighted-sum formulae to calculate (for each 
pixel) spectral radiance of the synthesized multispectral image 
bands Li

MSIMSI from the hyperspectral radiances Lj
HSIHSI: 

ated with 
Gaussian functions. For the HSI bands with the Gaussian shape 
and full width at half-maximum ∆j, the coefficients cij are used 
in the following weighted-sum formulae to calculate (for each 
pixel) spectral radiance of the synthesized multispectral image 
bands Li  from the hyperspectral radiances Lj : 
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An example of the band synthesis is shown in Figure 1 for the 
case of Landsat 7 Enhanced Thematic Mapper Plus (ETM+) 
Band 1 simulated from AVIRIS 1999 data. The figure also 
illustrates that although the synthesized bands and the actual 
bands closely overlap, some artifacts do occur, such as ripples 
at band plateaus, shoulders at band edges and negative values 
outside bands. Applying the ART spectral band synthesis 
approach to an AVIRIS image produces a simulated image 
whose radiance values are consistent with the radiance values 
of a coincident Landsat 7 image when atmospheric radiative 
transfer effects are taken into account (Blonski et al., 2002). 

 
Figure 2. Band-to-band misregistration for a single band. 

 



 

3.3 Spatial Resolution Simulation 

Spatial resolution simulation processing converts the input 
image’s GSD to the desired sensor’s GSD. Ground sampling 
distance refers to the size of an image pixel and is a function of 
the instantaneous field of view (IFOV) and altitude of the 
sensor. It should be noted that in-track and cross-track pixel 
size is not necessarily the same, particularly for sensors with a 
wide field of view. The ART provides two methods of spatial 
simulation: spatial point spread function synthesis and spatial 
degradation (Gasser, 2001). 
 
3.3.1 Point Spread Function Synthesis:  The simulation of 
a sensor with a low-resolution GSD using a high-resolution 
GSD sensor is achieved by using a linear combination of the 
high-resolution sensor’s point spread functions (normally 
Gaussian in nature) to create a low-resolution point spread 
function. The algorithm is similar to the spectral synthesis 
algorithm discussed in section 3.1, but it is extended to two 
dimensions. The coefficients are now cijkl, where the i and j 
subscripts are the number of rows and columns of the high-
spatial-resolution image and the subscripts k and l are the 
number of rows and columns of the low-spatial-resolution 
image. Consider the low-resolution sensor Landsat 7 and the 
high-resolution sensor AVIRIS. Assuming the PSFs are 
separable in the X and Y directions, the following equations can 
be used to express an effective PSF of the Landsat image as a 
linear combination of the AVIRIS image PSF: 
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These coefficients cijkl are found independently for each 
Landsat pixel by solving, in the least squares sense, the 
equations (3) and (4) for a given set of points (x, y). In current 
ART simulations, the PSFs are modeled with two-dimensional 
Gaussian functions. The range of summations in the equations 
is limited to the region in which each of the PSF components 
exceeds a threshold value. In the ART, the threshold is 
currently set to 0.01 (1 percent). Application of this algorithm 
for one of the pixels in the low-spatial-resolution Landsat 
image generates plots of the horizontal and vertical point spread 
functions shown in Figure 3. 
 
For each spectral band, the Landsat image (L') is simulated by 
linear combination of the AVIRIS image (L) pixels according 
to equation (6). 
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This PSF simulation process is a computationally intensive 
operation, even for moderately sized images. Using reasonably 

equipped computer hardware, processing has taken up to 
several hours per band for typical images (Gasser, 2001). 
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Figure 3. ART PSF synthesis example showing Landsat 7 
PSF (dashed), AVIRIS PSF components (solid), and 
simulated Landsat (dotted). 

 
3.3.2 

3.4 Noise 

Spatial Degradation:  As an alternative to the highly 
computational process described above, it is useful to have a 
high-speed spatial simulation algorithm that can produce results 
in a timely fashion. The ART spatial degradation algorithm 
uses a combination of low pass filtering (LPF) and resampling 
techniques to simulate spatially the desired image product. Low 
pass filtering is achieved by convolving an image with an 
averaging kernel of M×N dimensions (usually square).  This 
allows the user to create an image with the blur characteristics 
of the desired sensor (Gasser, 2001). 
 
Resampling is performed by choosing a single pixel from an 
N×N block of pixels within the image to represent that entire 
block of pixels (Gasser, 2001). 
 

The ART noise algorithm is based on the two-point noise 
equivalent radiance (NER) model shown in equation (7). To 
calculate NER for an arbitrary input radiance (L0), NER values 
(NERL and NERH) must be supplied for each band of the sensor 
at two radiance levels: low (LL) and high (LH).  
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(a) 30-meter LPF applied at 10-meter 
intervals (10-meter GSD) 
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Noise is simulated by adding to each band of the radiance 
image a matrix of random numbers with normal distribution, 
zero mean, and standard deviation equal to the NER calculated 
specifically for each pixel (Gasser, 2001). 
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3.5 Data Quantization 

Data quantization refers to the process by which data with one 
precision is converted to data with another precision, usually 
lower than the initial precision. This allows the user to convert 
the simulated data set to the data quantization level and data 
storage type of the desired sensor. For example, image pixels 
with an effective precision of 24 bits and stored as 32 bit 
floating point numbers can be converted to image pixels with a 
precision of 12 bits and stored as 16 bit integers. Note that the 
N-bit image can be stored in more than N bits (for example, a 
12-bit image stored as 16-bit integers). In such a case, the 
maximum image value is not the largest integer value of the 
storage unit, it is based on the value of the maximum digital 
number, DNmax (or maximum radiance, Lmax , for radiance 
images). Data quantization in the ART is accomplished using 
the equation listed below. 
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DNmin, DNmax Lmin, and Lmax represent the minimum digital 
number, maximum digital number, minimum radiance, and 
maximum radiance values, respectively, and INT indicates the 
truncation to an integer function (Gasser, 2001). 
 
 

4. EXAMPLES 

4.1 

4.2 

ART Validation Using Landsat 

The ART algorithms and selected simulated products have been 
validated using actual Landsat 7 ETM+ scenes acquired nearly 
coincident to the input dataset.  In one example, an AVIRIS 
scene of the Department of Energy Savannah River Site in 
South Carolina acquired on July 26, 1999, was used as an ART 
input dataset for simulation of several Landsat-like products.  
The AVIRIS data, acquired at approximately 3-meter GSD, had 
ART spectral, spatial and noise algorithms applied.  Several 
variations of spatial degradation were explored using different 
combinations of low pass filtering and resampling.  Simulated 
products were then compared to Landsat 7 ETM+ data acquired 
near coincidentally.  The resulting radiance scatter-plots for two 
of the products and for ETM+ are shown in Figure 4. 

 
Figure 4. Comparison of radiance scatter plots for ART 

simulated data (a and b) and for Landsat 7 data (c), 
Landsat band 1 vs. band 2. 

 
Sensor Cross-Comparisons 

ART simulations have been used to perform sensor cross-
comparisons for performance characterization. IKONOS 
images were used to simulate four VNIR bands of Landsat 7 
ETM+ images. Both IKONOS and Landsat 7 images were of 
similar processing level (radiometric correction, georeferenced 
with cubic-convolution resampling, UTM projection) and were 
acquired on June 30, 2000.  For each spectral band, the 
Landsat 7 image was simulated by a linear combination of the 
IKONOS image pixels, as described in section 3.3.1, to create a 
simulated Landsat product. Simulated products were compared 

 



 

with the coincident Landsat 7 images to provide insights on 
radiometric calibration, spatial resolution and geolocation 
accuracy of the IKONOS image products. Slight differences 
between IKONOS and Landsat 7 spectral bands were not 
addressed.  
 
To perform radiometric comparisons, IKONOS initial post-
launch radiometric calibration coefficients were applied to the 
IKONOS image prior to spatial synthesis. The resulting 
simulated image radiance values were compared to the well-
calibrated Landsat 7 radiance values. The results revealed an 
inconsistency between IKONOS and Landsat 7 radiometry as 
shown for the NIR band in Figure 5. This simulation validated 
similar results derived from vicarious calibration methods.  The 
IKONOS radiometric calibration coefficients were 
subsequently updated (Blonski, 2001). 
 

Figure 5. Radiance scatter plot showing IKONOS-derived 
Landsat simulation radiance values using original 
IKONOS radiometric coefficients vs. actual 
coincident Landsat ETM+ radiance values for the 
NIR band. 

 
 

5. SUMMARY 

The Applications Research Toolbox, developed at NASA’s 
Stennis Space Center, provides an ability to simulate remote 
sensing data to assist sensor design and applications trade 
studies.  Through simulation, data requirements can be assessed 
against application and research needs.  Such data requirements 
analysis not only affects design but also has implications for 
sensor and data calibration and validation.  Through simulation, 
data of varying radiometric, spatial and geometric parameters 
and accuracies can be produced.  The various simulated 
products can then be assessed against a series of application 
needs. Such assessments, combined with cost/price 
considerations, can help to optimize a sensor’s design, 
operations and calibration. 
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